
Text Mining with R

Ben Williams 
2018





Resources

Text Mining with R: Julia Silge (StackOverflow) & David Robinson (DataCamp)

https://www.tidytextmining.com/

R for Data Science: Garrett Grolemund & Hadley Wickham

http://r4ds.had.co.nz/

Both are free!

https://www.tidytextmining.com/
http://r4ds.had.co.nz/


Tidy Data

In general: 

-> 1 observation per row, 1 variable per column

Text Mining:

-> One token per row

Token: word, bigram, n-gram, etc.



Tools for Tidying Data

tidyverse packages: dplyr, ggplot2, tidyr, stringr, readr (the package tidyverse
contains many of the useful packages and loads them all at once)

group_by()/ungroup(): group by a variable, then perform groupwise operations

filter() : filter rows

select(): select columns

count(): count the number of observations in a group

mutate(): add a new column

%>% : “composed of”, “then”



Brief Aside if Necessary

%>% is called a pipe (see R for Data Science 5.6 for more info)

The %>% lets us easily and clearly combine functions in R

x %>% f(y) really means, f(x,y). 

Example: data_stat_club is dataset of everyone’s name, age, birthplace

data_stat_club %>%
select(age) %>%
mean(na.rm=T)

#this takes the tibble data_stat_club, selects the variable age, and gets its mean 



Data

Can read .csv, .tsv, .xlsx, etc. into R. Look up readr and readxl package for more 
info. i.e. read_csv()

We want data formatted as a data frame or as a tibble (a data frame that prints 
to the console nicely)

Want: Text in one column of the tibble, does not have to be one token-per-row to 
be read into R



Tidy Text Data

Package: tidytext

Function: unnest_tokens(tbl,output,input,token=”words”)

unnest_tokens() takes your data (tibble or data frame) and a given character 
column and tokenizes that column. By default, it splits the column into words

This is the first step in tidying the data.

See first part of R Code 



Stop Words

Stop Words are words we assume are uninformative in any sort of textual 
analysis, such as “the”, “and”, “is”, “were”, etc.

tidytext has provided a tibble of stop words called stop_words. The columns are 
“word” and “lexicon”

We can remove stop words from our newly tidy text data using anti_join()

text_data %>% #unclean data is text_data
unnest_tokens(text,word) %>% #input column is “text”, output is “word”
anti_join(stop_words) #remove any stop words 



Sentiment Analysis

Idea: sometimes a word has an emotion or sentiment associated with it. We can 
analyze the text based on these emotions

For example: “joyful” might be classified as positive, and “distraught” might be 
classified as negative

Somewhat ad hoc in my mind: i.e. “not happy” -> “happy” without stop words -> 
classified as positive. There had been work done on negating words though...

Lexicons built into tidytext package, can also specialize it for your own text



Topic Modeling
Latent Dirichlet Allocation (LDA) Topic Modeling is an unsupervised algorithm that 
“groups” a corpus into a given number of topics.

In LDA each document is represented by a distribution of topics which are 
characterized by a distribution over the unique words in the corpus (Blei, Ng and 
Jordan, 2003)

Think of Dallas Morning News, say we model it with 4 topics.
1: (president, mayor, vote, county, judge, senate,...)
2: (golf, hockey, Dirk, cowboys, basketball, soccer, …)
3: (sunny, rain, sun, wind, cold, flood, temperature, high,...)
4: (police, crime, prison, bail, officer, shooting, robbery,...)
Each newspaper article is made up of these topics, each topic is a distribution 
over all the unique words in the corpus of newspapers



Document Term Matrix (DTM)

Matrix where rows are documents of a corpus, and columns are terms in 
vocabulary

A DTM is the input into an LDA model, along with the parameter for number of 
topics

Transform tidy data to DTM: cast_dtm(data,document,term,count)

Tidy a DTM: tidy(dtm)



Beta and Gamma

Beta: per-topic-per-word probability 

-Use to see what words are important in each topic

Gamma: per-document-per-topic probability

-Use to see what topics make up each document



Shiny Tool - if time

https://github.com/williamsbenjamin/nesting-topics

app_comp.R and app_hand.R are Shiny scripts that make a Sunburst of 
hierarchically nested topic models. They use two datasets available on my 
github. Check out the datasets to see the format for creating a Sunburst. Really 
easy and a great interactive tool! Sunburst is a D3 visualization that has been 
transferred to an R package as well. 

https://github.com/williamsbenjamin/nesting-topics


Questions?

benjamin@smu.edu

mailto:benjamin@smu.edu

